[Home] [Group] [Research] [Publications] [Tutorials & Tips] [Teaching] [Downloads]

Our research topics

For relevant publications see our list of publications
Please also check out our Downloads page for useful software related to our research

General Topics:

Current Projects: Below is a list of topics that we’re working on, with support from the National Science Foundation (NSF) and the US Department of Energy (DOE), focusing on various aspects from the list of general topics above. Citations to selected publications, mostly recent ones, are included for most topics, so you can pull up the article abstracts and read more if you are interested. Most of the publications are behind a paywall. Please email us if you would like to receive a PDF version of an article.

  1. Properties of molecules and extended systems: Electronic structure and molecular dynamics (funded by NSF, Division of Chemistry). Current topics:

  2. Metal-ligand bonding in complexes with Platinum Group Metals (PGMs) (funded by DOE, Critical Materials initiative, collaboration with Rob Schurko, Florida State University). The overarching goal of this project is to find out what makes PGEs so special. We hypothesize that much of it has to do with unique metal-ligand bonding. Topics:

  3. Actinide and lanthanide complexes: What do magnetic, electric, optical, and spectroscopic properties reveal about 5s shell covalency? (funded by DOE, Heavy Element Chemistry program). Current topics:

  4. Lanthanide complexes with interesting electronic structures (funded by DOE, Quantum Information Science (QIS) initiative, collaboration with Eric Schelter, University of Pennsylvania). The project focuses on lanthanide complexes with multiconfigurational electronic ground states, and how such quantum effects may be used in QIS. A recent publication is [344].
    For this project, we implemented the calculation of Natural Transition Orbitals for spin-orbit coupled wavefunctions in OpenMolcas [365], and an eXact 2-Component (X2C) module for calculating the magnetic hyperfine coupling. [339]

Even when it is not stated so explicitly, many of these project involve collaborations with other researchers—often experimentalists—at UB, elsewhere in the US, and internationally.

Why is this interesting and important?

Quantum Mechanics makes it possible to predict, theoretically, from first principles, the behavior of atoms, molecules and solids, i.e. the properties of the atomistic building blocks of everything around us. Solving the relevant equations (with some necessary approximations) requires serious number crunching. Recent advances in computer technology and algorithm development have allowed for the computation and theoretical prediction of the structures and properties, for example, of biomolecules, nano-materials, catalysts, and molecular materials. Such calculations are of great importance in science for at least three major reasons:

  1. Calculations can be used to rationalize, after the fact, what has been measured in a laboratory, to explain trends, or to decide which of several possible explanations of an experimental outcome is correct. Sometimes there is very little empirical knowledge available about what causes the signs and trends of observed properties. Theory can be of great help to generate this knowledge.

  2. Calculations can be used to design molecules and materials with improved properties, e.g. better performing catalysts, better performing optical materials, or compounds with more precise chemical functions. Theory-assisted or theory-driven design of molecules and materials can enormously speed up the development cycle.

  3. Calculations can be used to predict the behavior of yet unknown compounds and materials, or even entirely new chemical and physical phenomena. Exciting stuff! Hopefully someone eventually confirms the new effect, synthesizes the new molecule, and finds a way to make that hitherto unknown material.

Our research is primarily focused on predicting and understanding magnetic, optical and spectroscopic properties of molecules. This is very important: In spectroscopy, for example, scientists study molecules by placing them in static or oscillating electric or magnetic fields of varying frequency and detecting the molecule’s response to the presence of these fields. These spectroscopic methods are among the most powerful tools available to scientists to investigate molecular structure, bonding within molecules, interactions between molecules, their dynamic behavior, and how all this related to the desired functionality and chemistry. There are numerous spectroscopic methods available, depending on the choice of the fields, each one being governed by a different molecular response parameter that can be both measured and calculated. Many interesting properties of advanced materials are also described by such response parameters.

Quantum Chemistry Software

Performing calculations as described above requires quantum chemistry software. The Autschbach research group is active in developing new theoretical methods and accompanying software. In particular, we are active contributors to the open-source NWChem and OpenMolcas quantum chemistry packages, and to the Amsterdam Density Functional suite. ‘In-house’ developments are available on GitHub.


© 2011 – 2022 J. Autschbach. Any opinions, findings, and conclusions or recommendations expressed here are those of the author and do not necessarily reflect the views of the funding agencies mentioned on this page.